Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38630402

RESUMEN

Biocontrol solutions (macroorganisms, microorganisms, natural substances, semiochemicals) are presented as potential alternatives to conventional plant protection products (PPPs) because they are supposed to have lower impacts on ecosystems and human health. However, to ensure the sustainability of biocontrol solutions, it is necessary to document the unintended effects of their use. Thus, the objectives of this work were to review (1) the available biocontrol solutions and their regulation, (2) the contamination of the environment (soil, water, air) by biocontrol solutions, (3) the fate of biocontrol solutions in the environment, (4) their ecotoxicological impacts on biodiversity, and (5) the impacts of biocontrol solutions compared to those of conventional PPPs. Very few studies concern the presence of biocontrol solutions in the environment, their fate, and their impacts on biodiversity. The most important number of results were found for the organisms that have been used the longest, and most often from the angle of their interactions with other biocontrol agents. However, the use of living organisms (microorganisms and macroorganisms) in biocontrol brings a specific dimension compared to conventional PPPs because they can survive, multiply, move, and colonize other environments. The questioning of regulation stems from this specific dimension of the use of living organisms. Concerning natural substances, the few existing results indicate that while most of them have low ecotoxicity, others have a toxicity equivalent to or greater than that of the conventional PPPs. There are almost no result regarding semiochemicals. Knowledge of the unintended effects of biocontrol solutions has proved to be very incomplete. Research remains necessary to ensure their sustainability.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38324154

RESUMEN

Copper-based plant protection products (PPPs) are widely used in both conventional and organic farming, and to a lesser extent for non-agricultural maintenance of gardens, greenspaces, and infrastructures. The use of copper PPPs adds to environmental contamination by this trace element. This paper aims to review the contribution of these PPPs to the contamination of soils and waters by copper in the context of France (which can be extrapolated to most of the European countries), and the resulting impacts on terrestrial and aquatic biodiversity, as well as on ecosystem functions. It was produced in the framework of a collective scientific assessment on the impacts of PPPs on biodiversity and ecosystem services in France. Current science shows that copper, which persists in soils, can partially transfer to adjacent aquatic environments (surface water and sediment) and ultimately to the marine environment. This widespread contamination impacts biodiversity and ecosystem functions, chiefly through its effects on phototrophic and heterotrophic microbial communities, and terrestrial and aquatic invertebrates. Its effects on other biological groups and biotic interactions remain relatively under-documented.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38051484

RESUMEN

Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.

4.
Artículo en Inglés | MEDLINE | ID: mdl-38036909

RESUMEN

Neonicotinoids are the most widely used class of insecticides in the world, but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays, and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds) and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater, and marine organisms, as well as on ecosystem services associated with these biotas.

5.
Artículo en Inglés | MEDLINE | ID: mdl-37099095

RESUMEN

Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.

6.
Sci Total Environ ; 844: 157003, 2022 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-35772548

RESUMEN

Before their placing on the market, the safety of plant protection products (PPP) towards both human and animal health, and the environment has to be assessed using experimental and modelling approaches. Models are crucial tools for PPP risk assessment and some even help to avoid animal testing. This review investigated the use of modelling approaches in the ecotoxicology section of PPP active substance assessment reports prepared by the authorities and opened to consultation from 2011 to 2021 in the European Union. Seven categories of models (Structure-Activity, ToxicoKinetic, ToxicoKinetic-ToxicoDynamic, Species Sensitivity Distribution, population, community, and mixture) were searched for into the reports of 317 active substances. At least one model category was found for 44 % of the investigated active substances. The most detected models were Species Sensitivity Distribution, Structure-Activity and ToxicoKinetic for 27, 21 and 15 % of the active substances, respectively. The use of modelling was of particular importance for conventional active substances such as sulfonylurea or carbamates contrary to microorganisms and plant derived substances. This review also highlighted a strong imbalance in model usage among the biological groups considered in the European Regulation (EC) No 1107/2009. For example, models were more often used for aquatic than for terrestrial organisms (e.g., birds, mammals). Finally, a gap between the set of models used in reports and those existing in the literature was observed highlighting the need for the implementation of more sophisticated models into PPP regulation.


Asunto(s)
Ecotoxicología , Magnoliopsida , Animales , Unión Europea , Humanos , Mamíferos , Plantas , Medición de Riesgo
7.
Environ Sci Pollut Res Int ; 29(29): 43448-43500, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35391640

RESUMEN

A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).


Asunto(s)
Productos Agrícolas , Ecosistema , Ecotoxicología , Plaguicidas , Animales , Plaguicidas/efectos adversos , Medición de Riesgo
8.
Environ Sci Pollut Res Int ; 28(28): 38448-38454, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34131840

RESUMEN

Several sustainable development goals cannot be achieved without implementing a new generation of environmental measures to better preserve or restore biodiversity and ecosystem services. However, understanding and addressing biodiversity loss and ecosystem degradation is a challenging problem that is not solvable without integrating the best and latest science. It is crucial to enhance the legibility of this knowledge for decision-makers and policymakers following good-practice standards of scientific assessment. This is the main objective of collective scientific assessments (CSAs), as carried out by the French National Research Institute for Agriculture, Food and the Environment (INRAE) since the early 2000s following a documented procedure to inform public policy and foster public debate on complex interdisciplinary issues. This article describes the main steps of the CSA procedure designed by INRAE's Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, from formulation of the initial question asked by public or para-public bodies (typically ministry divisions or environmental agencies) to wider dissemination of the results and conclusions. This process description is then illustrated through the example of a CSA recently commissioned by three French Ministries (for Ecology, for Research, and for Agriculture) regarding (i) contamination of terrestrial, freshwater, and marine ecosystems by plant protection products (PPPs); (ii) the resulting effects on biodiversity and ecosystem services; and (iii) possible prevention and mitigation strategies. The capacity of this kind of CSA to inform public debate and policymaking is then exemplified through a description of the main outcomes generated by the latest CSA dealing with the adverse effects of PPPs. We also provide a short overview of some key expectations from the current CSA, with a focus on the recent development of the ecosystem service approach in ecological risk assessments of PPPs in the European Union. This illustration demonstrates that CSAs, which are applicable to a wide variety of complex interdisciplinary questions that are not limited to environmental issues, are a relevant tool to inform public debate and policymaking.


Asunto(s)
Biodiversidad , Ecosistema , Conservación de los Recursos Naturales , Unión Europea , Formulación de Políticas , Desarrollo Sostenible
9.
J Hazard Mater ; 415: 125613, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34088172

RESUMEN

Following treatment, amounts of pesticides can reach the atmosphere because of spray drift, volatilization from soil or plants, and/or wind erosion. Monitoring and risk assessment of air contamination by pesticides is a recent issue and more insights on pesticide transfer to atmosphere are needed. Thus, the objective of this work was to better understand and assess pesticides emission potential to air through volatilization. The TyPol tool was used to explore the relationships between the global, soil and plant volatilization potentials of 178 pesticides, and their molecular properties. The outputs of TyPol were then compared to atmospheric pesticide concentrations monitored in various French regions. TyPol was able to discriminate pesticides that were observed in air from those that were not. Clustering considering parameters driving the emission potential from soil (sorption characteristics) or plant (lipophilic properties), in addition to vapor pressure, allowed better discrimination of the pesticides than clustering considering all parameters for the global emission potential. Pesticides with high volatilization potential have high total energy, and low molecular weight, molecular connectivity indices and polarizability. TyPol helped better understand the volatilization potential of pesticides. It can be used as a first step to assess the risk of air contamination by pesticides.

10.
Sci Total Environ ; 753: 141722, 2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33207457

RESUMEN

Despite the richness of data collected on pesticide concentrations in ambient air in France, knowledge on this topic remains partial and heterogeneous in the absence of specific regulations. The population exposure remains thus difficult to estimate; therefore it was necessary to define modalities for implementing national monitoring of pesticides in ambient air in metropolitan France and in the overseas territories. The objective of this work was to identify which active substances (a.s.) have to be monitored in priority. As part of a collective expertise, a group of multidisciplinary experts has developed a method to rank active substances authorised as plant protection products, biocides and antiparasitic agents, which were available on the French market in 2015. A 3-steps approach has been developed. The first step consisted of a theoretical approach based on a hierarchy of substances according to four criteria: (a) national uses, (b) emission potential to the air, (c) persistence in the air, and (d) chronic toxicity. The three first criteria give information on their potential to be present in the atmosphere, and the fourth criterion allows to consider their potential of hazard. The second step was an observational approach based on existing database on pesticide air measurements in France. In the third step, both approaches were combined using decision trees to select priority pesticides. Among the 1316 a.s. first identified from the EU Pesticides database, 90 were selected, among which 43 required metrological and/or analytical development. The experts recommended confirming the relevance of performing a longer term monitoring of these a. s. after a one-year exploratory campaign. The proposed method is reproduceable, transparent, easy to update (e.g. in the light of a change in product authorization), and can be adapted to other agricultural and geographical conditions, and objectives (e.g. monitoring of the ecotoxicological effects of pesticides).

11.
Sci Total Environ ; 725: 138374, 2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32278182

RESUMEN

The dissipation and persistence of two cereals herbicides, chlorotoluron and flufenacet, were studied in a field experiment including three replicated plots of unamended soil (S), soil amended with spent mushroom substrate (S + SMS), and soil amended with green compost (S + GC), during the winter wheat cultivation campaign. The SMS and GC organic residues were applied to the soil at rates of 140 or 85 t residue ha-1, and herbicides were sprayed as Erturon® and Herold® formulations for chlorotoluron and flufenacet, respectively. Concentrations of both herbicides and of their metabolites were regularly measured in the three soil treatments (0-10 cm) from 0 to 339 days. The dissipation kinetics fitted well the single first order (SFO) model, except that of chlorotoluron that fitted the first order multi-compartment (FOMC) model better in the unamended soil. The dissipation rates of herbicides were lower in amended than in unamended soils. The results also showed that the DT50 of chlorotoluron (66.2-88.0 days) and flufenacet (117-145 days) under field conditions were higher than those previously obtained at laboratory scale highlighting the importance of the changing environmental conditions on the dissipation process. Similarly, the formation of chlorotoluron and flufenacet metabolites under field conditions was different from that previously observed in the laboratory. The performance of the MACRO pesticide fate model, parameterized with laboratory data, was then tested against field data. There was a very good agreement between measured and simulated chlorotoluron residue levels in the three soil treatments, while the ability of the model to reproduce the dissipation of flufenacet was good in the unamended soil and very good in S + SMS and S + GC soils. MACRO might be used to estimate the remaining amounts of herbicides in amended soils from degradation data previously obtained at laboratory scale. This would help to manage herbicide doses in different environmental conditions to preserve the sustainability of agricultural systems.

12.
Sci Total Environ ; 717: 137019, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32070888

RESUMEN

Addition of organic residues to soil is a current farming practice but it is not considered in the modelling studies for pesticide risk assessment at regulatory level despite its potential impact on the pesticide dynamics in soil. Thus, the objective of this work was to examine and to compare the ability of PRZM and MACRO pesticide fate models to simulate soil water content, and bromide (Br-, tracer), chlorotoluron and flufenacet concentrations in the soil profiles (0-100 cm) of one agricultural soil, unamended (control soil, S), amended with spent mushroom substrate (S + SMS) or amended with green compost (S + GC). Based on a two-year field-scale dataset, the models were first calibrated against measurements of water and solutes contents in the soil profiles (first year) and then tested without any further model calibration by comparison with the field observations of the second year. In general, the performance of MACRO to simulate the whole dataset in the three soil treatments was higher than that of PRZM. MACRO simulated satisfactorily the water dynamics along the soil profiles whereas it was poorly described by the capacity model PRZM. Both models predicted very well the Br- mobility in control and amended soils after dispersion parameters were fitted to observations. No calibration was necessary to reproduce correctly herbicides vertical distribution in the control soil profile. In the amended soils, MACRO simulations were highly correlated to the observed vertical distribution of flufenacet and chlorotoluron, but calibration of the Kd of chlorotoluron was needed. On the contrary, modelling with PRZM required calibration of Kd and DT50 of both herbicides to obtain an acceptable agreement between observations and predictions in the amended soils. Kd and DT50 calibration was based on the initial dissolved organic carbon contents (DOC) of amended soils. It allowed to take into account the processes that decrease the herbicides sorption on the soil and enhance their bioavailability, but that are not described in PRZM and MACRO (such as the formation of herbicide-DOC mobile complexes). This work showed that models such as PRZM and MACRO are able to simulate the fate of pesticides in amended soils. However, before using these models as predictive tools in large amended soil conditions, and especially in the regulatory context, further modelling studies should focus on other pedoclimatic-pesticides-organic residues combinations, and on longer periods.

13.
Sci Total Environ ; 628-629: 1508-1517, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045569

RESUMEN

Conservation tillage practices mainly based on cover crops and no-tillage with accumulation of crop residues at the soil surface (mulch) modify the environmental fate of pesticides. However, only few pesticide fate models are able to consider mulch of crop residues as well as the effect of intermediate cover crops. Thus, the objective was to develop an approach to model the effects of crop residues left at the soil surface and cover crops on the fate of pesticides. This approach consisted in (1) considering the crop residues as a soil layer with specific physical, hydrodynamic and pesticide-reactivity properties close to that of a high organic content soil layer, and (2) introducing a correction factor of the potential evapotranspiration, estimated through a calibration step, to take into account the reduction of soil evaporation by the presence of a mulch. This approach was developed using MACRO as support pesticide model. To assess the model performances, we used the data from a field experiment designed in an irrigated maize monoculture under conservation tillage. Soil water content, water percolates, soil temperature and S-metolachlor herbicide concentrations in the leachate at 1m depth were measured during two years. The approach chosen to simulate the mulch effects allowed MACRO to make acceptable predictions of the observed water percolation, soil temperature and to a less extent herbicide leaching. However, it showed a poor performance to simulate the soil water content. Results are discussed in terms of further modelling options to better assess the environmental risks of pesticides under conservation tillage. This approach remains to be tested against various soils, crops, pesticides and types of mulch.


Asunto(s)
Acetamidas/análisis , Agricultura/métodos , Modelos Químicos , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Productos Agrícolas , Monitoreo del Ambiente , Suelo/química
14.
Environ Sci Pollut Res Int ; 25(5): 4728-4738, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29197062

RESUMEN

Understanding the fate and ecotoxicological effects of pesticides largely depends on their molecular properties. We recently developed "TyPol" (Typology of Pollutants), a classification method of organic compounds based on statistical analyses. It combines several environmental (sorption coefficient, degradation half-life) and one ecotoxicological (bioconcentration factor) parameters, to structural molecular descriptors (number of atoms in the molecule, molecular surface, dipole moment, energy of orbitals, etc.). The present study attempts to extend TyPol to the ecotoxicological effects of pesticides on non-target organisms, based on data analysis from available literature and databases. It revealed that relevant ecotoxicological endpoints for terrestrial organisms (e.g., soil microorganisms, invertebrates) that support a range of ecosystemic services are lacking as compared to aquatic organisms. The availability of ecotoxicological parameters was also lower for chronic than for acute ecotoxicity endpoints. Consequently, seven parameters were included for acute (EC50, LC50) and chronic (NOEC) ecotoxicological effects for one terrestrial (Eisenia sp.) and three aquatic (Daphnia sp., algae, Lemna sp.) organisms. In this new configuration, we used TyPol to classify 50 pesticides into different clusters that gather molecules with similar environmental behaviors and ecotoxicological effects. The classification results evidenced relationships between molecular descriptors, environmental parameters, and the added ecotoxicological endpoints. This proof-of-concept study also showed that TyPol in silico classification can successfully address new scientific questions and be expanded with other parameters of interest.


Asunto(s)
Ecotoxicología/métodos , Monitoreo del Ambiente/métodos , Contaminantes Ambientales/clasificación , Plaguicidas/clasificación , Animales , Chlorophyta/efectos de los fármacos , Análisis por Conglomerados , Daphnia/efectos de los fármacos , Ecosistema , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Dosificación Letal Mediana , Oligoquetos/efectos de los fármacos , Plaguicidas/química , Plaguicidas/toxicidad , Pruebas de Toxicidad
15.
Environ Int ; 105: 66-78, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28521191

RESUMEN

BACKGROUND: Reducing the risks and impacts of pesticide use on human health and on the environment is one of the objectives of the European Commission Directive 2009/128/EC in the quest for a sustainable use of pesticides. This Directive, developed through European national plans such as Ecophyto plan in France, promotes the introduction of innovative cropping systems relying, for example, on integrated pest management. Risk assessment for human health of the overall pesticide use in these innovative systems is required before the introduction of those systems to avoid that an innovation becomes a new problem. OBJECTIVES: The objectives of this work were to assess and to compare (1) the human exposure to pesticides used in conventional and innovative cropping systems designed to reduce pesticide needs, and (2) the corresponding risks for human health. METHODS: Humans (operator and residents) exposure to pesticides and risks for human health were assessed for each pesticide with the BROWSE model. Then, a method was proposed to represent the overall risk due to all pesticides used in one system. This study considers 3 conventional and 9 associated innovative cropping systems, and 116 plant protection products containing 89 different active substances (i.e. pesticides). RESULTS: The modelling results obtained with BROWSE showed that innovative cropping systems such as low input or no herbicide systems would reduce the risk for human health in comparison to the corresponding conventional cropping systems. On the contrary, BROWSE showed that conservation tillage system would lead to unacceptable risks in the conditions of our study, because of a high number of pesticide applications, and especially of some herbicides. For residents, the dermal absorption was the main exposure route while ingestion was found to be negligible. For operators, inhalation was also a predominant route of exposure. In general, human exposure to pesticides and human health risks were found to be correlated to the treatment frequency index TFI (number of registered doses of pesticides used per hectare for one copping season), confirming the relationship between the reduction of pesticide use and the reduction of risks. CONCLUSIONS: Assessment with the BROWSE model helped to identify cropping systems with decreased risks from pesticides for human health and to propose some improvements to the cropping systems by identifying the pesticides that led to unacceptable risks.


Asunto(s)
Agricultura/métodos , Modelos Teóricos , Plaguicidas/efectos adversos , Adulto , Agricultura/normas , Niño , Productos Agrícolas , Ambiente , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Francia , Humanos , Medición de Riesgo/métodos
17.
Environ Sci Pollut Res Int ; 24(8): 6895-6909, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27194012

RESUMEN

The current challenge in sustainable agriculture is to introduce new cropping systems to reduce pesticides use in order to reduce ground and surface water contamination. However, it is difficult to carry out in situ experiments to assess the environmental impacts of pesticide use for all possible combinations of climate, crop, and soils; therefore, in silico tools are necessary. The objective of this work was to assess pesticides leaching in cropping systems coupling the performances of a crop model (STICS) and of a pesticide fate model (MACRO). STICS-MACRO has the advantage of being able to simulate pesticides fate in complex cropping systems and to consider some agricultural practices such as fertilization, mulch, or crop residues management, which cannot be accounted for with MACRO. The performance of STICS-MACRO was tested, without calibration, from measurements done in two French experimental sites with contrasted soil and climate properties. The prediction of water percolation and pesticides concentrations with STICS-MACRO was satisfactory, but it varied with the pedoclimatic context. The performance of STICS-MACRO was shown to be similar or better than that of MACRO. The improvement of the simulation of crop growth allowed better estimate of crop transpiration therefore of water balance. It also allowed better estimate of pesticide interception by the crop which was found to be crucial for the prediction of pesticides concentrations in water. STICS-MACRO is a new promising tool to improve the assessment of the environmental risks of pesticides used in cropping systems.


Asunto(s)
Agricultura/métodos , Productos Agrícolas/crecimiento & desarrollo , Modelos Teóricos , Plaguicidas/análisis , Contaminantes del Suelo/análisis , Contaminantes Químicos del Agua/análisis , Clima , Francia , Suelo/química
18.
Sci Total Environ ; 580: 117-129, 2017 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-27986318

RESUMEN

STICS-MACRO is a process-based model simulating the fate of pesticides in the soil-plant system as a function of agricultural practices and pedoclimatic conditions. The objective of this work was to evaluate the influence of crop management practices on water and pesticide flows in contrasted environmental conditions. We used the Morris screening sensitivity analysis method to identify the most influential cropping practices. Crop residues management and tillage practices were shown to have strong effects on water percolation and pesticide leaching. In particular, the amount of organic residues added to soil was found to be the most influential input. The presence of a mulch could increase soil water content so water percolation and pesticide leaching. Conventional tillage was also found to decrease pesticide leaching, compared to no-till, which is consistent with many field observations. The effects of the soil, crop and climate conditions tested in this work were less important than those of cropping practices. STICS-MACRO allows an ex ante evaluation of cropping systems and agricultural practices, and of the related pesticides environmental impacts.


Asunto(s)
Agricultura/métodos , Modelos Químicos , Plaguicidas , Contaminantes del Suelo , Ambiente , Suelo
19.
Sci Total Environ ; 574: 781-795, 2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27664765

RESUMEN

Chlordecone (C10Cl10O; CAS number 143-50-0) has been used extensively as an organochlorine insecticide but is nowadays banned and listed on annex A in The Stockholm Convention on Persistent Organic Pollutants (POPs). Although experimental evidences of biodegradation of this compound are scarce, several dechlorination products have been proposed by Dolfing et al. (2012) using Gibbs free energy calculations to explore different potential transformation routes. We here present the results of an in silico classification (TyPol - Typology of Pollutants) of chlordecone transformation products (TPs) based on statistical analyses combining several environmental endpoints and structural molecular descriptors. Starting from the list of putative chlordecone TPs and considering available data on degradation routes of other organochlorine compounds, we used different clustering strategies to explore the potential environmental behaviour of putative chlordecone TPs from the knowledge on their molecular descriptors. The method offers the possibility to focus on TPs present in different classes and to infer their environmental fate. Thus, we have deduced some hypothetical trends for the environmental behaviour of TPs of chlordecone assuming that TPs, which were clustered away from chlordecone, would have different environmental fate and ecotoxicological impact compared to chlordecone. Our findings suggest that mono- and di-hydrochlordecone, which are TPs of chlordecone often found in contaminated soils, may have similar environmental behaviour in terms of persistence.

20.
Chemosphere ; 154: 425-433, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27077537

RESUMEN

A significant fraction of pesticides sprayed on crops may be returned to soils via plant residues, but its fate has been little documented. The objective of this work was to study the fate of glyphosate associated to plants residues. Oilseed rape was used as model plant using two lines: a glyphosate-tolerant (GT) line and a non-GT one, considered as a crucifer weed. The effects of different fragmentation degrees and placements in soil of plant residues were tested. A control was set up by spraying glyphosate directly on the soil. The mineralization of glyphosate in soil was slower when incorporated into plant residues, and the amounts of extractable and non-extractable glyphosate residues increased. Glyphosate availability for mineralization increased when the size of plant residues decreased, and as the distribution of plant residues in soil was more homogeneous. After 80 days of soil incubation, extractable (14)C-residues mostly involved one metabolite of glyphosate (AMPA) but up to 2.6% of initial (14)C was still extracted from undecayed leaves as glyphosate. Thus, the trapping of herbicides in plant materials provided a protection against degradation, and crops residues returns may increase the persistence of glyphosate in soils. This pattern appeared more pronounced for GT crops, which accumulated more non-degraded glyphosate in their tissues.


Asunto(s)
Brassica napus/metabolismo , Productos Agrícolas/metabolismo , Glicina/análogos & derivados , Herbicidas/metabolismo , Contaminantes del Suelo/metabolismo , Suelo/química , Brassica napus/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo , Glicina/química , Glicina/metabolismo , Herbicidas/química , Contaminantes del Suelo/química , Glifosato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...